Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Plant Physiol Biochem ; 209: 108547, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522132

RESUMO

Drought has been considered the most restrictive environmental constraint on agricultural production worldwide. Photosynthetic carbohydrate metabolism is a critical biochemical process connected with crop production and quality traits. A pot experiment was carried out under four potassium (K) rates (0, 0.75, 1.5 and 2.25 g pot-1 of K, respectively) and two water regimes to investigate the role of K in activating defense mechanisms on sucrose metabolism against drought damage in sesame. The soil moisture contents are 75 ± 5% (well-watered, WW) and 45 ± 5% (drought stress, DS) of field capacity respectively. The results showed that DS plants without K application have lower activities of ribulose-1,5-bisphosphate carboxylase (Rubisco), sucrose phosphate synthase (SPS), soluble acid invertase (SAI), and chlorophyll content and higher activity of sucrose synthase (SuSy), which resulted in declined synthesis and distribution of photosynthetic products to reproductive organs. Under drought, there was a significant positive correlation between leaf sucrose metabolizing enzymes and sucrose content. Plants subjected to drought stress increased the concentrations of soluble sugar and sucrose to produce osmo-protectants and energy sources for plants acclimating to stress but decreased starch content. Conversely, K application enhanced the carbohydrate metabolism, biomass accumulation and partitioning, thereby contributing to higher seed oil and protein yield (28.8%-43.4% and 27.5%-40.7%) as compared to K-deficiency plants. The positive impacts of K application enhanced as increasing K rates, and it was more pronounced in drought conditions. Furthermore, K application upregulated the gene expression of SiMYB57, SiMYB155, SiMYB176 and SiMYB192 while downregulated SiMYB108 and SiMYB171 in drought conditions, which may help to alleviate drought susceptibility. Conclusively, our study illustrated that the enhanced photo-assimilation and translocation process caused by the changes in sucrose metabolism activities under K application as well as regulation of MYB gene expression contributes towards drought resistance of sesame.


Assuntos
Secas , Sesamum , Sesamum/genética , Sesamum/metabolismo , Potássio/metabolismo , Metabolismo dos Carboidratos/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Sacarose/metabolismo , Expressão Gênica
2.
Food Chem ; 444: 138650, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330611

RESUMO

Sesame (Sesamum indicum L.) is an important allergenic food whose presence can be the cause of severe allergic reactions in sensitised individuals. In this work, nanoplate digital PCR (ndPCR) was used to develop two methods to detect trace amounts of sesame in processed foods and compared with previously proposed real-time PCR assays. Two independent ndPCR approaches were successfully advanced, achieving sensitivities of 5 and 0.1 mg/kg of sesame in dough/biscuits, targeting the CO6b-1 and ITS regions, respectively. The sensitivity using both targets was improved by one order of magnitude comparing with real-time PCR and was not affected by food processing. CO6b-1 system was not influenced by food matrix, exhibiting similar performance regardless the use of complex matrix extracts or serial diluted DNA. Herein, ndPCR was proposed for the first time for the detection of allergenic foods with the advantage of providing better performance than real-time PCR regarding sensitivity and robustness.


Assuntos
Hipersensibilidade Alimentar , Sesamum , Humanos , Sesamum/genética , Análise de Alimentos/métodos , Reação em Cadeia da Polimerase em Tempo Real , DNA de Plantas/genética , DNA de Plantas/análise , Alérgenos/genética , Alérgenos/análise
3.
Biotechnol Appl Biochem ; 71(2): 414-428, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38282371

RESUMO

The mechanisms regulating the content ratio of unsaturated fatty acid in sesame oil need to be clarified in order to breed novel varieties with high contents of unsaturated fatty acids. Full-length cDNA libraries prepared from sesame seeds 1 to 3 weeks after flowering were subtracted with cDNAs from plantlets of 4 weeks after germination. A total of 1545 cDNA clones was sequenced. The functions of novel genes expressed specifically during the early maturation of sesame seeds were investigated by the transformation of Arabidopsis thaliana. Thirteen genes for a transcription factor were identified, four of which were involved in ethylene signaling. Fifty-nine genes, including those for the aquaporin-like protein and ethylene response factor, were analyzed by overexpression in A. thaliana. The overexpression of novel genes and the aquaporin-like protein gene in A. thaliana increased the content of unsaturated fatty acids. The localization of these products was investigated by the induction of the expression vectors for the GFP fusion protein into onion epidermal cells and sesame root cells with a particle gun. As a result, two cDNA clones were identified as good candidate genes to clarify the regulation in the yield and the ratio of unsaturated fatty acids in sesame seeds. Sein60414 (Accession No. LC603128), an intrinsic membrane protein, may be involved in the increase of unsaturated fatty acids, and Sein61074 (Accession No. LC709278) MAP3K δ-1 protein kinase in the regulation of the total ratio of unsaturated fatty acids in sesame seeds.


Assuntos
Aquaporinas , Arabidopsis , Sesamum , Sesamum/genética , Sesamum/metabolismo , DNA Complementar , Arabidopsis/genética , Ácidos Graxos Insaturados/metabolismo , Sementes/genética , Sementes/metabolismo , Aquaporinas/metabolismo , Etilenos/metabolismo
4.
Plant Physiol Biochem ; 206: 108205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035467

RESUMO

Cultivating high nitrogen use efficient varieties is a sustainable solution to mitigating adverse effects on the environment caused by excessive nitrogen fertilizer application. However, in sesame, although immoderate nitrogen fertilizers are used to promote yield, the molecular basis of high nitrogen use efficiency (NUE) is largely unknown. Hence, this study aimed to identify high NUE black sesame variety and dissect the underlying physiological and molecular mechanisms. To achieve this, seventeen seedling traits of 30 black sesame varieties were evaluated under low nitrogen (LN) and high nitrogen (HN) conditions. Dry matter accumulation, root parameters, shoot nitrogen accumulation, and chlorophyll content are important factors for evaluating the NUE of sesame genotypes. The variety 17-156 was identified as the most efficient for N utilization. Comparative physiological and transcriptomics analyses revealed that 17-156 possesses a sophisticated nitrogen metabolizing machinery to uptake and assimilate higher quantities of inorganic nitrogen into amino acids and proteins, and simultaneously improving carbon metabolism and growth. Specifically, the total nitrogen and soluble protein contents significantly increased with the increase in nitrogen concentrations. Many important genes, including nitrate transporters (NPFs), amino acid metabolism-related (GS, GOGAT, GDH, etc.), phytohormone-related, and transcription factors, were significantly up-regulated in 17-156 under HN condition. In addition, 38 potential candidate genes were identified for future studies toward improving sesame's NUE. These findings offer valuable resources for deciphering the regulatory network of nitrogen metabolism and developing sesame cultivars with improved NUE.


Assuntos
Nitrogênio , Sesamum , Nitrogênio/metabolismo , Sesamum/genética , Sesamum/metabolismo , Perfilação da Expressão Gênica , Genótipo , Fenótipo
5.
Plant Commun ; 5(1): 100729, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37798879

RESUMO

Sesame is an ancient oilseed crop with high oil content and quality. However, the evolutionary history and genetic mechanisms of its valuable agronomic traits remain unclear. Here, we report chromosome-scale genomes of cultivated sesame (Sesamum indicum L.) and six wild Sesamum species, representing all three karyotypes within this genus. Karyotyping and genome-based phylogenic analysis revealed the evolutionary route of Sesamum species from n = 13 to n = 16 and revealed that allotetraploidization occurred in the wild species Sesamum radiatum. Early divergence of the Sesamum genus (48.5-19.7 million years ago) during the Tertiary period and its ancient phylogenic position within eudicots were observed. Pan-genome analysis revealed 9164 core gene families in the 7 Sesamum species. These families are significantly enriched in various metabolic pathways, including fatty acid (FA) metabolism and FA biosynthesis. Structural variations in SiPT1 and SiDT1 within the phosphatidyl ethanolamine-binding protein gene family lead to the genomic evolution of plant-architecture and inflorescence-development phenotypes in Sesamum. A genome-wide association study (GWAS) of an interspecific population and genome comparisons revealed a long terminal repeat insertion and a sequence deletion in DIR genes of wild Sesamum angustifolium and cultivated sesame, respectively; both variations independently cause high susceptibility to Fusarium wilt disease. A GWAS of 560 sesame accessions combined with an overexpression study confirmed that the NAC1 and PPO genes play an important role in upregulating oil content of sesame. Our study provides high-quality genomic resources for cultivated and wild Sesamum species and insights that can improve molecular breeding strategies for sesame and other oilseed crops.


Assuntos
Sesamum , Sesamum/genética , Sesamum/metabolismo , Estudo de Associação Genômica Ampla , Fenótipo , Genômica , Evolução Molecular
6.
BMC Plant Biol ; 23(1): 624, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057720

RESUMO

BACKGROUND: Sesame charcoal rot caused by Macrophomina phaseolina is one of the most serious fungal diseases in sesame production, and threatens the yield and quality of sesame. WAKL genes are important in the plant response to biotic stresses by sensing and transmitting external signals to the intracellular receptor. However, there is still a lack about the WAKL gene family and its function in sesame resistance to M. phaseolina. The aim of this study was to interpret the roles of WAKL genes in sesame resistance to M. phaseolina. RESULTS: In this study, a comprehensive study of the WAKL gene family was conducted and 31 WAKL genes were identified in the sesame genome. Tandem duplication events were the main factor in expansion of the SiWAKL gene family. Phylogenetic analysis showed that the sesame SiWAKL gene family was divided into 4 groups. SiWAKL genes exhibited different expression patterns in diverse tissues. Under M. phaseolina stress, most SiWAKL genes were significantly induced. Notably, SiWAKL6 was strongly induced in the resistant variety "Zhengzhi 13". Functional analysis showed that SiWAKL6 was induced by salicylic acid but not methyl jasmonate in sesame. Overexpression of SiWAKL6 in transgenic Arabidopsis thaliana plants enhanced their resistance to M. phaseolina by inducing the expression of genes involved in the salicylic acid signaling pathway and reconstructing reactive oxygen species homeostasis. CONCLUSIONS: Taken together, the results provide a better understanding of functions about SiWAKL gene family and suggest that manipulation of these SiWAKL genes can improve plant resistance to M. phaseolina. The findings contributed to further understanding of functions of SiWAKL genes in plant immunity.


Assuntos
Arabidopsis , Ascomicetos , Sesamum , Sesamum/genética , Filogenia , Arabidopsis/genética , Ácido Salicílico/farmacologia
7.
PLoS One ; 18(11): e0293155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917626

RESUMO

Seed size and shape are important traits that determine seed yield in sesame. Understanding the genetic basis of seed size and shape is essential for improving the yield of sesame. In this study, F2 and BC1 populations were developed by crossing the Yuzhi 4 and Bengal small-seed (BS) lines for detecting the quantitative trait loci (QTLs) of traits related to seed size and shape. A total of 52 QTLs, including 13 in F2 and 39 in BC1 populations, for seed length (SL), seed width (SW), and length to width ratio (L/W) were identified, explaining phenotypic variations from 3.68 to 21.64%. Of these QTLs, nine stable major QTLs were identified in the two populations. Notably, three major QTLs qSL-LG3-2, qSW-LG3-2, and qSW-LG3-F2 that accounted for 4.94-16.34% of the phenotypic variations were co-localized in a 2.08 Mb interval on chromosome 1 (chr1) with 279 candidate genes. Three stable major QTLs qSL-LG6-2, qLW-LG6, and qLW-LG6-F2 that explained 8.14-33.74% of the phenotypic variations were co-localized in a 3.27 Mb region on chr9 with 398 candidate genes. In addition, the stable major QTL qSL-LG5 was co-localized with minor QTLs qLW-LG5-3 and qSW-LG5 to a 1.82 Mb region on chr3 with 195 candidate genes. Gene annotation, orthologous gene analysis, and sequence analysis indicated that three genes are likely involved in sesame seed development. These results obtained herein provide valuable in-formation for functional gene cloning and improving the seed yield of sesame.


Assuntos
Locos de Características Quantitativas , Sesamum , Locos de Características Quantitativas/genética , Sesamum/genética , Mapeamento Cromossômico/métodos , Fenótipo , Sementes/genética
8.
Theor Appl Genet ; 136(11): 221, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819543

RESUMO

KEY MESSAGE: A 4.43-Kb structural variation in the sesame genome results in the deletion of the Siofp1 gene and induces the long capsule length trait. Capsule length (CL) has a positive effect on seed weight and yield in various agronomically important species; however, the molecular mechanism underlying long capsule trait regulation in sesame remains unknown. The inheritance analysis showed that long capsule traits (CL > 4.0 cm) were dominant over normal length (average CL = 3.0 cm) and were controlled by a single gene pair. Association mapping with a RIL population and 259 natural sesame germplasm accessions indicated that the target interval was 52,830-730,961 bp of SiChr.10 in sesame. Meanwhile, the structural variation (SV) of the association mapping revealed that only SV_414325 on chromosome 10 was significantly associated with the CL trait, with a P value of 1.1135E-19. SV_414325 represents a 4430-bp deletion from 414,325 to 418,756 bp on SiChr.10, covering Sindi_2155000 (named SiOFP1). In the normal length type, Siofp1 encodes 411 amino acids of the ovate family proteins and is highly expressed in the leaf, stem, bud, and capsule tissues of sesame. In accordance with the transcriptional repressor character, Siofp1 overexpression in transgenic Arabidopsis (T0 and T1 generations) induced a 25-39% greater shortening of silique length than the wild type (P < 0.05), as well as round cauline leaves and short carpels. These results confirm that SiOFP1 plays a key role in regulating CL trait in sesame and other flowering plants. These findings provide a theoretical and material basis for sesame capsule development and high-yield breeding research.


Assuntos
Sesamum , Sesamum/genética , Mapeamento Cromossômico/métodos , Melhoramento Vegetal , Fenótipo , Padrões de Herança
9.
PLoS One ; 18(9): e0287246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751450

RESUMO

Sesame is an important oilseed crop cultivated in Ethiopia as a cash crop for small holder farmers. However, low yield is one of the main constraints of its cultivation. Boosting and sustaining production of sesame is thus timely to achieve the global oil demand. This study was, therefore, aimed at identifying mutant genotypes targeted to produce better agronomic traits of M2 lines on fourteen Ethiopian sesame genotypes through seed treatment with chemical mutagens. EMS was used as a chemical mutagen to treat the fourteen sesame genotypes. Quantitative and qualitative data were recorded and analyzed using analysis of variance with GenStat 16 software. Post-ANOVA mean comparisons were made using Duncan's Multiple Range Test (p≤ 0.01). Statistically significant phenotypic changes were observed in both quantitative and qualitative agronomic traits of the M2 lines. All mutant genotypes generated by EMS treatment showed a highly significant variation for the measured quantitative traits, except for the traits LBL and LTL. On the other hand, EMS-treated genotypes showed a significant change for the qualitative traits, except for PGT, BP, SSCS, LC, LH and LA traits. Mutated Baha Necho, Setit 3, and Zeri Tesfay showed the most promising changes in desirable agronomic traits. To the best of our knowledge, this study represents the first report on the treatment of sesame seeds with EMS to generate desirable agronomic traits in Ethiopian sesame genotypes. These findings would deliver an insight into the genetic characteristics and variability of important sesame agronomic traits. Besides, the findings set up a foundation for future genomic studies in sesame agronomic traits, which would serve as genetic resources for sesame improvement.


Assuntos
Sesamum , Sesamum/genética , Metanossulfonato de Etila/farmacologia , Fenótipo , Genótipo , Metano
10.
PLoS One ; 18(8): e0289813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37561696

RESUMO

The value of combining hybridization and mutagenesis in sesame was examined to determine if treating hybrid sesame plant material with mutagens generated greater genetic variability in four key productivity traits than either the separate hybridization or mutation of plant material. In a randomized block design with three replications, six F2M2 varieties, three F2varieties, and three parental varieties were assessed at Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India. The plant characteristics height, number of seed capsules per plant, and seed yield per plant had greater variability in the F2M2 generation than their respective controls (F2), however, the number of primary branches per plant varied less than in the control population. The chances for trait selection to be operative were high for all the characteristics examined except the number of primary branches per plant, as indicated by heritability estimates. Increases in the mean and variability of the characteristics examined indicted a greater incidence of beneficial mutations and the breakdown of undesirable linkages with increased recombination. At both phenotypic and genotypic levels strong positive correlations between both primary branch number and capsule number with seed yield suggest that these traits are important for indirect improvement in sesame seed yield. As a result of the association analysis, sesame seed yield and its component traits improved significantly, which may be attributed to the independent polygenic mutations and enlarged recombination of the polygenes controlling the examined characteristics. Compared to the corresponding control treatment or to one cycle of mutagenic treatment, two cycles of mutagenic treatment resulted in increased variability, higher transgressive segregates, PTS mean and average transgression for sesame seed yield. These findings highlight the value of implementing two EMS treatment cycles to generate improved sesame lines. Furthermore, the extra variability created through hybridization may have potential in subsequent breeding research and improved seed yield segregants may be further advanced to develop ever-superior sesame varieties.


Assuntos
Sesamum , Sesamum/genética , Melhoramento Vegetal , Fenótipo , Genótipo , Mutagênese
11.
Mol Biol Rep ; 50(10): 8281-8295, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37584845

RESUMO

BACKGROUND: The plant trihelix gene family is among the earliest discovered transcription factor families, and it is vital in modulating light, plant growth, and stress responses. METHODS: The identification and characterization of trihelix family members in the sesame genome were analyzed by bioinformatics methods, and the expression patterns of sesame trihelix genes were assessed by quantitative real-time PCR. RESULTS: There were 34 trihelix genes discovered in the genome of sesame, which were irregularly distributed among 10 linkage groups. Also, the genome contained 5 duplicate gene pairs. The 34 trihelix genes were divided into six sub-families through a phylogenetic study. A tissue-specific expression revealed that SiTH genes exhibited spatial expression patterns distinct from other trihelix genes in the same subfamily. The cis-element showed that the SiTHs gene promoter contained various elements associated with responses to hormones and multiple abiotic stresses. Additionally, the expression patterns of 8 SiTH genes in leaves under abiotic stresses demonstrated that all selected genes were significantly upregulated or downregulated at least once in the stress period. Furthermore, the SiTH4 gene was significantly induced in response to drought and salt stress, showing that SiTH genes may be engaged in the stress response mechanisms of sesame. CONCLUSION: These findings establish a foundation for further investigation of the trihelix gene-mediated response to abiotic stress in sesame.


Assuntos
Sesamum , Fatores de Transcrição , Fatores de Transcrição/genética , Sesamum/genética , Sesamum/metabolismo , Filogenia , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética
12.
PLoS One ; 18(6): e0286599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267340

RESUMO

To reduce the genome sequence representation, restriction site-associated DNA sequencing (RAD-seq) protocols is being widely used either with single-digest or double-digest methods. In this study, we genotyped the sesame population (48 sample size) in a pilot scale to compare single and double-digest RAD-seq (sd and ddRAD-seq) methods. We analysed the resulting short-read data generated from both protocols and assessed their performance impacting the downstream analysis using various parameters. The distinct k-mer count and gene presence absence variation (PAV) showed a significant difference between the sesame samples studied. Additionally, the variant calling from both datasets (sdRAD-seq and ddRAD-seq) exhibits a significant difference between them. The combined variants from both datasets helped in identifying the most diverse samples and possible sub-groups in the sesame population. The most diverse samples identified from each analysis (k-mer, gene PAV, SNP count, Heterozygosity, NJ and PCA) can possibly be representative samples holding major diversity of the small sesame population used in this study. The best possible strategies with suggested inputs for modifications to utilize the RAD-seq strategy efficiently on a large dataset containing thousands of samples to be subjected to molecular analysis like diversity, population structure and core development studies were discussed.


Assuntos
Sesamum , Sesamum/genética , Genoma , Genótipo , Análise de Sequência de DNA/métodos , Sequência de Bases
14.
Mol Biol Rep ; 50(8): 6885-6899, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37326753

RESUMO

Genetic improvement of sesame (Sesamum indicum L.), one of the most important oilseed crops providing edible oil, proteins, minerals, and vitamins, is important to ensure a balanced diet for the growing world population. Increasing yield, seed protein, oil, minerals, and vitamins is urgently needed to meet the global demand. The production and productivity of sesame is very low due to various biotic and abiotic stresses. Therefore, various efforts have been made to combat these constraints and increase the production and productivity of sesame through conventional breeding. However, less attention has been paid to the genetic improvement of the crop through modern biotechnological methods, leaving it lagging behind other oilseed crops. Recently, however, the scenario has changed as sesame research has entered the era of "omics" and has made significant progress. Therefore, the purpose of this paper is to provide an overview of the progress made by omics research in improving sesame. This review presents a number of efforts that have been made over past decade using omics technologies to improve various traits of sesame, including seed composition, yield, and biotic and abiotic resistant varieties. It summarizes the advances in genetic improvement of sesame using omics technologies, such as germplasm development (web-based functional databases and germplasm resources), gene discovery (molecular markers and genetic linkage map construction), proteomics, transcriptomics, and metabolomics that have been carried out in the last decade. In conclusion, this review highlights future directions that may be important for omics-assisted breeding in sesame genetic improvement.


Assuntos
Sesamum , Sesamum/genética , Sesamum/metabolismo , Melhoramento Vegetal , Fenótipo , Sementes/metabolismo , Produtos Agrícolas , Vitaminas
15.
Plant Physiol Biochem ; 198: 107695, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37058966

RESUMO

Plant height is a key agronomic trait influencing crops yield. The height of sesame plants is important for yield performance, lodging resistance and plant architecture. Although plant height is significantly distinct among sesame varieties, the genetic basis of plant height remains largely unknown. In this study, in order to tackle genetic insights into the sesame plant height development, a comprehensive transcriptome analysis was conducted using the stem tips from two sesame varieties with distinct plant height, Zhongzhi13 and ZZM2748, at five time points by BGI MGIseq2000 sequencing platform. A total of 16,952 genes were differentially expressed between Zhongzhi13 and ZZM2748 at five time points. KEGG and MapMan enrichment analyses and quantitative analysis of phytohormones indicated that hormones biosynthesis and signaling pathways were associated with sesame plant height development. Plenty of candidate genes involved in biosynthesis and signaling of brassinosteroid (BR), cytokinin (CK) and gibberellin (GA) which were major differential hormones between two varieties were identified, suggesting their critical roles in plant height regulation. WGCNA revealed a module which was significantly positively associated with the plant height trait and founded SiSCL9 was the hub gene involved in plant height development in our network. Further overexpression in transgenic Arabidopsis validated the function of SiSCL9 in the increase of plant height by 26.86%. Collectively, these results increase our understanding of the regulatory network controlling the development of plant height and provide a valuable genetic resource for improvement of plant architecture in sesame.


Assuntos
Arabidopsis , Sesamum , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/genética , Sesamum/genética , Sesamum/metabolismo , Produtos Agrícolas/genética , Arabidopsis/genética , Hormônios , Regulação da Expressão Gênica de Plantas
16.
BMC Plant Biol ; 23(1): 137, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907856

RESUMO

Seed shattering is a critical challenge that significantly reduces sesame production by 50%. These shattering losses can be reduced by selecting shattering resistant genotypes or by incorporating modern agronomic management such as paclobutrazol, which can boost productivity and prevent seed shattering in sesame. Two-years of field trials were conducted to examine the effect of sesame genotypes, environment, and paclobutrazol (PBZ) concentrations. Twelve sesame genotypes were used in a four-way factorial RCBD with three replications and five PBZ concentrations (T0 = Control; T1 = 150; T2 = 300; T3 = 450; and T4 = 600 mg L- 1) under rainfed conditions of Pothwar. The findings revealed significant variations in the major effects of all examined variables (genotypes, locations, years, and PBZ levels). Sesame genotypes PI-154304 and PI-175907 had the highest plant height, number of capsule plant- 1, seed capsule- 1, 1000 seed weight, biological yield, and seed yield, while also having the lowest seed losses and shattering percentage. Regarding environments, NARC-Islamabad generated the highest plant height, number of capsule plant- 1, shattering percentage, and biological yield; however, the URF-Koont produced the highest seed yield with the lowest shattering percentage. Additionally, plant height, capsules plant- 1, and biological yield were higher in 2021, while seed capsule- 1, 1000 seed weight, seed losses, shattering percentage, and seed yield were higher in 2020. PBZ concentration affected all measured parameters; plant height and number of seed capsule- 1 decreased with increasing PBZ concentrations. 450 mg L- 1 PBZ concentration generated the highest biomass, number of capsules plant- 1, and seed yield. At the same time, PBZ concentration 600 mg L- 1 generated the smallest plant, the lowest seed capsules- 1, the greatest thousand seed weight, and the lowest shattering percentage. The study concluded that paclobutrazol could dramatically reduce shattering percentage and shattering losses while increasing economic returns through better productivity. Based on the findings, the genotypes PI-154304 and PI-175907 with paclobutrazol level 450 mgL- 1 may be suggested for cultivation in Pothwar farming community under rainfed conditions, as they showed promising shattering resistance as well as enhanced growth and yield.


Assuntos
Doenças das Plantas , Sesamum , Triazóis , Cápsulas , Genótipo , Sesamum/genética , Sesamum/microbiologia , Triazóis/farmacologia , Doenças das Plantas/microbiologia
17.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834516

RESUMO

Sesame is one of the important traditional oil crops in the world, and has high economic and nutritional value. Recently, due to the novel high throughput sequencing techniques and bioinformatical methods, the study of the genomics, methylomics, transcriptomics, proteomics and metabonomics of sesame has developed rapidly. Thus far, the genomes of five sesame accessions have been released, including white and black seed sesame. The genome studies reveal the function and structure of the sesame genome, and facilitate the exploitation of molecular markers, the construction of genetic maps and the study of pan-genomes. Methylomics focus on the study of the molecular level changes under different environmental conditions. Transcriptomics provide a powerful tool to study abiotic/biotic stress, organ development, and noncoding RNAs, and proteomics and metabonomics also provide some support in studying abiotic stress and important traits. In addition, the opportunities and challenges of multi-omics in sesame genetics breeding were also described. This review summarizes the current research status of sesame from the perspectives of multi-omics and hopes to provide help for further in-depth research on sesame.


Assuntos
Sesamum , Sesamum/genética , Multiômica , Melhoramento Vegetal , Genômica/métodos , Proteômica/métodos
18.
GM Crops Food ; 14(1): 21-31, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36635971

RESUMO

Sesame (Sesamum indicum L.) is an important oil crop and one of the oldest-known oil crops to humankind. Sesame has excellent nutritional and therapeutic properties; it is rich in important fatty acids, protein, fiber, and vital minerals. Oil percentage varies among different genotypes but generally accounts for more than 50% of the seed's dry weight. To meet the increasing demand for vegetable oil production worldwide, expanding the cultivation of oil crops in newly reclaimed areas worldwide is essential. Molecular breeding is an expeditious approach for varietal improvement but requires efficient transgenesis. Published sesame transformation methods are highly genus-specific, tedious, and involve preparing and testing different media and explants. We produced transgenic sesame plants using a stable, noninvasive, and robust Agrobacterium tumefaciens transformation method. Leaves and flowers excised from the T0 plants at different developmental stages were PCR screened, and 61/93 seedlings were found to be PCR positive. T1 seeds resulting from two lines were germinated in a biocontainment greenhouse facility and screened using PCR, basta leaf painting, and spraying fully matured plants with basta herbicide (0.02 mg/l); non-transgenic segregants and control non-transgenic plants were severely damaged, and eventually died, while transgenic plants were not affected by the Basta spraying. RT-PCR on T1 plants indicated the presence of Bar transcripts in T1 progeny. Furthermore, RT-PCR using NPTII primers did not result in any amplification in transgenic sesame plants (NPTII is present in the vector but not in the T-DNA region) indicating that the transgenic sesame plants were not an Agrobacterium-contaminant.


Assuntos
Sesamum , Sesamum/genética , Sesamum/metabolismo , Egito , Plantas Geneticamente Modificadas/genética , Sementes/genética , Sementes/metabolismo
19.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674569

RESUMO

Sesame is a promising oilseed crop that produces specific lignans of clinical importance. Hence, a molecular description of the regulatory mechanisms of lignan biosynthesis is essential for crop improvement. Here, we resequence 410 sesame accessions and identify 5.38 and 1.16 million SNPs (single nucleotide polymorphisms) and InDels, respectively. Population genomic analyses reveal that sesame has evolved a geographic pattern categorized into northern (NC), middle (MC), and southern (SC) groups, with potential origin in the southern region and subsequent introduction to the other regions. Selective sweeps analysis uncovers 120 and 75 significant selected genomic regions in MC and NC groups, respectively. By screening these genomic regions, we unveiled 184 common genes positively selected in these subpopulations for exploitation in sesame improvement. Genome-wide association study identifies 17 and 72 SNP loci for sesamin and sesamolin variation, respectively, and 11 candidate causative genes. The major pleiotropic SNPC/A locus for lignans variation is located in the exon of the gene SiNST1. Further analyses revealed that this locus was positively selected in higher lignan content sesame accessions, and the "C" allele is favorable for a higher accumulation of lignans. Overexpression of SiNST1C in sesame hairy roots significantly up-regulated the expression of SiMYB58, SiMYB209, SiMYB134, SiMYB276, and most of the monolignol biosynthetic genes. Consequently, the lignans content was significantly increased, and the lignin content was slightly increased. Our findings provide insights into lignans and lignin regulation in sesame and will facilitate molecular breeding of elite varieties and marker-traits association studies.


Assuntos
Lignanas , Sesamum , Sesamum/genética , Sesamum/metabolismo , Estudo de Associação Genômica Ampla , Lignina , Análise de Sequência de DNA , Lignanas/metabolismo , Sementes/metabolismo
20.
PeerJ ; 11: e14711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36691485

RESUMO

Background: The chlorophyll content is susceptible to deficit moisture stress and may affect the plant yield. Leaf chlorophyll content is directly related to tolerance and higher productivity under deficit moisture stress (WS). The SPAD meter is an excellent tool for rapid analysis of crop chlorophyll content. Therefore, establishing a relationship between leaf chlorophyll content and seed yield is crucial in sesame, particularly under deficit moisture stress. Methods: Seeds of 37 sesame genotypes with checks were used in this study. These genotypes were mostly landraces, adapted to different agro-ecological zones in India. The selected genotypes were evaluated under well water (WW) and deficit moisture stress (WS) conditions. The SPAD readings were recorded ten (10) times each at every seven days intervals from the juvenile/first bud (30-35 days after sowing) to ripening/ physiological maturity (95-100 days after sowing) stage. This study aimed to identify the association between leaf SPAD readings (recorded at 7-days interval) and seed yield of sesame genotypes. Results: The analysis of variance revealed the presence of significant variation in SPAD readings due to treatment (WW and WS), genotypes, and their interaction effects. The SPAD readings at all stages were positively correlated with seed yield in both WW and WS. High values of correlation coefficients were observed at 52 (r: 0.672) and 59 (r: 0.655) DAS under WS; whereas at 59 (r: 0.960), 66 (r: 0.972) and 73 (r: 0.974) DAS under WW at one percent significance level (p < 0.01), which coincided with the mid-bloom stage of the sesame crop. The best-fit multiple regression model revealed that the dependence of sesame seed yield is significantly influenced by SPAD reading at 52 DAS under WS and 59 to 73 DAS under WW. Both these models provide a good fit with the chi-squared test, which compares the predicted and observed yield.


Assuntos
Sesamum , Sesamum/genética , Água , Clorofila/análise , Sementes/química , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...